
The Egyptian Journal of Remote Sensing and Space Sciences 24 (2021) 41–45
Contents lists available at ScienceDirect

The Egyptian Journal of Remote Sensing and Space Sciences

journal homepage: www.sciencedirect .com
Research Paper
Natural resonance frequency identification for remote sensing and
biomedical engineering using Prony method and fuzzy logic
https://doi.org/10.1016/j.ejrs.2019.12.001
1110-9823/� 2019 National Authority for Remote Sensing and Space Sciences. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer review under responsibility of National Authority for Remote Sensing and
Space Sciences.
⇑ Corresponding author.

E-mail addresses: elsayed.osama@gmail.com (O.A. Elsayed), Abdallah.hammad@
feng.bu.edu.eg (A. Hammad).
Osama A. Elsayed a,⇑, Abdallah Hammad b,c, Eman A. Abdel-Ghaffar b

aNARSS, EGSA, Egypt
b Faculty of Engineering Shoubra, Benha University, Egypt
cElectrical Engineering Department at College of Engineering, Bisha University, Saudi Arabia

a r t i c l e i n f o a b s t r a c t
Article history:
Received 7 October 2019
Revised 27 November 2019
Accepted 4 December 2019
Available online 19 December 2019

Keywords:
EEG
Feature extraction
Epilepsy
Poles
Prony method
Fuzzy logic
Prony method is applied to classify both the remote sensing and the biomedical signals. The first example
presented from remote sensing is the sea wave classification while the second example depicted from
biomedical engineering field is the Epilepsy seizure type classification. Feature extractions of both the
Global navigation satellite systems (GNSS) signal and the epilepsy seizure from a human
Electroencephalograph (EEG) signal are based on the poles location of the signal.
� 2019 National Authority for Remote Sensing and Space Sciences. Production and hosting by Elsevier B.
V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction

System identification is a technique widely used to construct an
Input Output Dynamic System which is response is measured for
both input and output signals followed by the model structure con-
struction. Consequently, the estimation method is applied to esti-
mate the adjustable parameters values in the model structure.
Finally, the model will be evaluated to see if the model is adapted
to the application requirements. Prony method has been employed
to various eras, especially radar target identification, EM waves,
biomedical processing, and wideband frequency response of
antennas (Sanei and Chambers, 2007; Mesbah and Boashash,
2004; James et al., 2018; Kannathal et al., 2019; James, 2007;
Iscan et al., 2011; Kannathal et al., 2005; Kiymik et al., 2004; Liu
et al., 2002; Lopes and da Silva, 1975; Han, 2018; Shen and Lin,
2010; Chisci, 2010; McSharry et al., 2003; Michel et al., 1999;
Miwakeichi et al., 2004; Aarabi et al., 2006; Evans, 1983;
Khawani and Bajwa, 1975; MIT-BIT datasets; El-Hefnawi, 1996;
El-Hefnawi and Mossaly, 1996; El-Hefnawi, 1996; El-Hefnawi,
1994; El-Hefnawi, 1994; El-Hefnawi, 1975; El-Hefnawi, 1975;
Bani-Hassan and Elhefnawi, 2009; Marwa and El-Hefnawi, 2015;
Theodoridis, 2010; Elsayed et al., 2012; Elsayed et al., 2015). In this
research, Prony method is used and applied for two different appli-
cations with fuzzy logic support: Remote sensing and Biomedical
Engineering.

First application is about remote sensing. A series of global nav-
igation satellites (GNSS-R) was developed for monitoring the
weather and sea waves. For example, UK-DMC British space satel-
lite mission.

Another Application, Epilepsy disorder occurring inside the
human brain affects only around 1% of the world wide population.
It is classified by a sudden malfunction ignition of neurons leads to
recurrent and continuous Seizures (Sanei and Chambers, 2007).
The types of Seizures are general or partial which will be explained.

Generalized seizures are presented as loss of consciousness. The
reason of this type of epilepsy is due to simultaneous seizures that
results of brain hemispheres abnormal activities. Partial seizures
are more leading to loss of memory, and motor behavior. These sei-
zures occur at the part of the brain called epileptogenic focus. That
is why called focal epilepsy too. Epileptic seizures will spread from
type to another type for example the focal to generalized seizures
(Mesbah and Boashash, 2004).

The most common database for epilepsy is MIT-BIT (James et al.,
2018) which collected at the Boston Hospital University and Ain
Shams University Specialized Hospital has another source of
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Fig. 2. Different Sea waves W1, W2 and W3 consequently.
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datasets. About 100 patients filtered to 5 patients only can be
clinically filtered (Subject 5 males) (James et al., 2018).

The area of the focal epilepsy can be identified by the location of
EEG electrodes, of almost third of all epilepsy patients with partial
seizures, is focused in the temporal lobe that is why called tempo-
ral lobe epilepsy

The EEG epilepsy recordings show two kinds of mal activity:
inter-ictal which defined as abnormal signals appeared among
epileptic seizures and the other type is called ictal seizure which
is the activity appeared while an epileptic seizure occurs. The
EEG signature of an inter-ictal activity is irregular transient wave-
forms, as isolated spikes or complicated spike-wave. Ictal period is
composed of a continuous discharge of EEG waveforms. It has a
variable amplitude and frequency spike and sharp wave com-
plexes, rhythmic hyper synchrony. Inter-ictal has limited time of
electro mind inactivity which is observed over short duration of
time compared to the average duration of these abnormalities dur-
ing ictal period. EEG analysis of patients suffering from epilepsy
usually relies on inter-ictal findings. A simulation using video
streamwill be applied to those epileptics patient in order to trigger
the nter-ictal EEG seizures, epileptic seizures.

Anomalous states basically saw in neurological issue like sei-
zures in epilepsy. Latest research centers on generally accessible
databases, which are quickly depicted from MIT-BIT (MIT-BIT
datasets). Ain Shams University Specialized Hospital has another
datasets of 100 patients separated to 5 patients just can be clini-
cally diagnosed (Subject 5 males). A study on epilepsy seizure
EEG signal demonstrating is accessible in writing (James, 2007;
Iscan et al., 2011; Kannathal et al., 2005; Kiymik et al., 2004; Liu
et al., 2002). AR model is the most widely recognized method uti-
lized for EEG demonstrating since the element extricated can be
easily used to distinguish the epilepsy sign dependent on its shafts
and zeros.

Fig. 1 shows the 8 s time of Epilepsy at EEG anodes C3-C2,
C3-O1, C2-C4, Fp1-T3, Fp2-T4. The high recurrence sign is the sign
of her epilepsy seizures. Fig. 2 depicts the GNSS-R signals at
different 3 types of sea waves. The first wave W1 is characterized
by high amplitude and medium frequency sea wave. The second
wave W2 is characterized by low amplitude and low frequency.
While, the third wave W3 is characterized by low amplitude and
high frequency.

2. Prony method

Prony Method is a method used for modeling f(ti) at D data sam-
ple points and is equated to a damped exponential functions linear
combination (Evans, 1983).

Beginning with the basic derivation of it, it is

f tj
� � ffi

XP
b¼1

Rbexp sbj
� �

; ð1Þ

And,

b ¼ 1; 2; 3; :::; P;
Fig. 1. EEG Electrodes signal C3-C2, C3-O1, C2-C4, Fp1-T3, Fp2-T4 shown in order
from top to bottom against time for 8 s duration.
j ¼ 0; 1; 2; 3; :::; D� 1:

where f (ti) is the Epileptic signal and D is the sampling at points
t0; t1; t2; :::; tD�1, sa is defined as the bth pole, and Rb is defined as
the bth residue’s amplitude.

It is essential to specify equation (1) in discrete data samples at
ϭt intervals, thus,

f tið Þ ¼ PP
b¼1

Rbexp sbidt
� �

;

f ðtiÞ ¼
PP
b¼1

Rb Xb

� �i
;

Xb ¼ exp sbdt
� �

ð2Þ

where sb: complex number and the polessbof the EEG signal can be
directly calculated as,

sb ¼ 1
d
ln Xb

� � ð3Þ

Where Rs are defined as the damping coefficients, and the size of the
sampling interval is d t. The above sets of nonlinear equations (2)
have both sets of unknowns Xb’s and Rb’s.

Using Prony Method procedure, one can define a polynomial A
(N) of order P in the variable having the same b roots appearing
in equations (1) to (2), thus,

A Nð Þ ¼ a0 þ a1N þ a2N
2 þ :::þ aPN

P ð4Þ

Equation (3) can be written in terms of its roots as,

A Nð Þ ¼ N � X1ð Þ N � X2ð Þ ::: N � XPð Þ ¼ 0 ð5Þ
where X’s: The roots of the above equation.

The coefficients in equation (4) can be calculated, the first equa-
tion (2) will be multiplied by the first coefficienta0, and the second
with a1and so on till the last coefficient aP which resulted in a set of
the following equations:



Fig. 4. Errors due to signal reconstruction.

Fig. 5. Poles location of a normal patient.
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a0f 0 ¼ a0Y1 þ a0Y2 þ :::þ a0YP

a1f 1 ¼ a1Y1X1 þ a1Y2X2 þ :::þ a1YPXP

a2f 2 ¼ a2Y1 X1ð Þ2 þ a2Y2 X2ð Þ2 þ :::þ a2YP XPð Þ2
::: ::: ::: ::: :::

aPf P ¼ aPY1 X1ð ÞP þ aPY2 X2ð ÞP þ :::þ aPYP XPð ÞP

ð6Þ

Adding the above set of equations (5), yields,

A X1ð Þ þ A X2ð Þ:::þ A XPð Þ ¼ f 0a0 þ f 1a1:::þ f PaP ð7Þ
where A(Xb) is defined in equation (4), Xb is the roots of A, thus,
equation (6) yields,

f 0a0 þ f 1a1 þ :::þ f PaP ¼ 0 ð8Þ
A set of D – P � 1 additional equation can be similarly obtained

by repeating the steps explained above, starting fromf1 to f(D-P-1),
producing the following set of equations,

f 0a0 þ f 1a1 þ :::þ f PaP ¼ 0
f 1a0 þ f 2a1 þ :::þ f Pþ1aP ¼ 0

::: ::: ::: ::: :::

f D�P�1a0 þ f D�Pa1 þ ::: þ f D�1aP ¼ 0

ð9Þ

Since the ordinates fi are known, and by taking ap = 1 (limitation
of the linear predictor), equation (9) overall can be found for taif
D = 2P, or approximated by using the technique of least square if
D > 2P.

Following the computing of a’s coefficients, the X’s can be calcu-
lated as the root of equation (3). Equation (2) then becomes a set of
linear equations in R. Then, R can be founded from the first P equa-
tions (2). In addition; the least square techniques can be applied.

3. Results and discussion

The EEG sign was gotten from the MIT-BIH Database (Khawani
and Bajwa, 1975) which is utilized for this work. Informational
indexes was made out of 22 epilepsy cases with examining rate
at 250 example/sec. Applying Prony Method to epilepsy yields
dependable outcomes. An ideal request of the polynomial is picked
in condition (1) that outcome in diminishing the Mean Square
Error (MSE) (shown in Fig. 3 and Fig. 4). It is conceivable to build
the request for the reproduced sign polynomial up to 30 to get neg-
ligible mistake. Instances of the epileptic signal control unearthly
are appeared in Fig. 5 and Fig. 6.

If we compare this new method to the RVM method employed
by Min Han (Han, 2018), one finds that Prony method is faster
Fig. 3. Original and reconstructed EEG signal.
compared to the ARmodel. The modeling is based on poles location
only and fuzzy system could be used instead of RVM. Number of
poles makes computation faster than AR model, which based on
poles and zeros. The Prony method is better than AR because the
Prony method basis is exponential signal not sinusoidal signal.

In this decade, approximated rationale has an assortment of uti-
lizations particularly for remote detecting and space applications.
Table 1 shows the quantity of sign utilized in preparing and testing
periods of all epilepsy classes where the grouping aftereffects of
classifier model of all classes are clarified. The precision, of the
classifier model achieve 100%.

It can be shown from Fig. 7 that the poles appear on the circum-
ference of the contour which intersects the real axis at 0.2 and the
imaginary axis at 0.4 where poles around 0.2 radiuses for epilepsy
signal. This region will be the fuzzy rule of interest. Fig. 8 shows
poles location for different type of sea waves that the conjugate
poles closer to x axis has a low amplitude sea wave and the conju-
gate poles closer to the unit circle has a higher sea wave amplitude.

Table 1 depicts the fuzzy range of the sea waves based on
amplitude and frequency. W2 mapped to the low amplitude and
low frequency while W3 mapped to high amplitude and frequency.



Fig. 8. Poles location of different sea waves W1, W2 and W3.

Fig. 6. Poles location of an abnormal patient.

Fig. 7. Poles location of the abnormal patient (ictal epilepsy signal).

Table 1
Classification results using fuzzy for training data.

Low Amplitude
Low
Frequency

Low Amplitude
medium
Frequency

High
Amplitude
High Frequency

W2 X
W1 X
W3 X
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4. Conclusion

Prony Method is utilized to depict the poles of the GNSS-R sign
and EEG signal. Poles of the GNSS-R are utilized to demonstrate
this ocean waves while the EEG to show the epilepsy issue. New
poles show up on account of epilepsy while different poles location
from ordinary EEG signal.
The signal model depends on the areas and number of poles. As
the quantity of poles expands, the MSE diminishes exponentially,
along these lines decreasing the mistake of the reproduced signal.
With the utilization of approximated rationale, the request for the
reproduced signal polynomial can be reduced to 30 rather than
400. Thus, the mean square error will be exceptionally near zero.
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